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ABSTRACT

Cebeci's viscous/inviscid interaction program was applied

to the analysis of steady, two dimensional, incompressible

flow past four airfoils, the NACA 663-018, 0010 (Modified),

4412 aihd the Wortmann FX 63-137. Detailed comparisons with

the available experimental results show that the essential

features are correctly modelled, but that significant

discrepancies are found in regions of flow separations.
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I. INTRODUCTION

Understanding of the characteristics of the airflow over

an airfoil is of paramount importance to the airfoil

designer. Two methods are currently available which give

accurate results. The first is the use of wind tunnel tests.

The drawbacks to this method are cost and time consumption.

The second is the processing of the Navier-Stokes equations.

This method's drawbacks are the requirements and expense of

using supercomputers due to the extensive calculations and

storage requirements. There is still a need to come up with

an inexpensive, fast and accurate engineering tool to compute

airfoil flows.

Several methods have been derived to accomplish this end.

But the most promising is the Viscous-Inviscid Interaction

method. The outer flow is computed using inviscid flow

equations, and the inner flow is computed using Prandtl's

boundary layer equations. The key to this method is the

extent of interaction between the inner and outer flows.

The purpose of this thesis is to evaluate the capability

of the viscous-inviscid interactive aircode developed by

Tuncer Cebeci and associates at the Douglas Aircraft Company

[Ref. 1]. This cc'puter program was applied to four airfoils

with various angles of attack and Reynolds numbers. The

computer results were then compared to previously reported

experimental results.



The conservation of mass and momentum are summarized in

Chapter 2, inviscid flow calculations are discussed in

Chapter 3, and viscous flow equations are described in

Chapter 4. Viscous calculations are presented in Chapter 5,

and the specific interaction methods are shown in Chapter 6.

Finally, in Chapter 7 computer and experimental results are

compared for the NACA 663-018, 0010 (Modified) and 4412

airfoils as well as the Wortmann FX 63-137 airfoil.
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II. FUNDAMENTAL EQUATIONS

The conservation of mass and conservation of momentum

provide the foundation for incompressible flow analysis.

With these fundamental concepts along with appropriate

assumptions and approximations, working relations for two-

dimensional, incompressible flow are obtained.

A. CONSERVATION OF MASS (CONTINUITY)

The conservation of mass principle states that mass

cannot be created nor destroyed. Equating this statement to

a fixed control volume the net mass flow rate into and out of

the control volume equals the time rate of change of mass

within the control volume [Ref. 2:p. A-l.

Given a control volume, the mass flow rate through one of

its surfaces is equal to the product of the fluid density,

the fluid velocity normal to the surface and the area of the

surface [Ref. 3:p. 29].

d mass
= V - n s (2.1)

dt

In 2-D flow the x-component of the mass flow rate at the

center of the positive x-face, position dx/2 and side length

dy, is represented by Taylor series expansion [Ref. 2:p. A-2]

3



Z dx 32 dx 1
Pu + -(pu)- + - (pu)(-) 2 - dy. (2.2)L ax 2 'x2 2 2+

As dx approaches zero all higher order terms disappear

leaving

~ dx
pu + -(pu)J d. (2.3)Dx 2

Similarly, the x-component of the mass flow rate at the

center of the negative x-face, position -dx/2 and side length

dy, is represented by

pu - (pu) dy. (2.4)

As illustrated in Figure 2.1 the net mass flow through the

four sides of the 2-D control surface is

pu -k(pu)J dy -pu + k(pu)] dyDx 2 x 2

+ pv (pv) dx Lpv + k(pv)- dx (2.5)

4



dy
pv + -(pv)- y

Z 2

x

dx dx
Pu - -(pu)- >~ dy + - Pu + -P)

Ex 2 Ex 2

dx

~Tdy

pv - p)
S2

Figure 2.1 Mass Flow Through 2-D Control Surface
[Ref. 4:p. 12]



which is equal to the rate of change of the mass within the

control volume

bP dxdy (2.6)
bt

combining (2.5) with (2.6) and simplifying yields

- -(pu)dxdy - -(pu)dxdy = -P dxdy (2.7)
x Dzy bx

Dividing by dxdy and rearranging yields

3 + '3(pu) + -(pU) = 0 (2.8)
z t 5x3

For steady, incompressible flows the continuity equation

becomes

3u 3v
- + -= 0 (2.9)
bx zy

or in vector form the continuity equation [Ref. 3:p. 301 is

7 • V = 0 (2.10)

B. CONSERVATION OF MOMENTUM (NAVIER-STOKES)

The conservation of momentum, Newton's second law of

motion, states that the rate of change of the linear momentum

is equal to the sum of the forces applied [Ref. 2:p. B-i].

6



d
EF = -(mV) (2.11)

dx

As illustrated in Figure 2.2 the two significant forces which

act on an element of fluid are surface forces which act on

the surface only, pressure and shear, and body forces which

affect the mass of the element, such as gravity. Assuming

moment equilibrium in an element, T., = T, the 2-D first

order Taylor series expansion for normal and shear surface

forces in the x-direction is

dx dx
+ +(----( ,) dybx 2 bX 2

7 dy dy]
+ Tc. + -(tV)- - + -xy) dxby 2 by 2

- -(T,, )dxdy + '(T y)dxdy. (2.12)ax y

The body forces per unit mass are represented by

Faonv = Xi + Yj + Zk (2.13)

such that the x-component of the body force on an element is

fn(aony) = pdxdy*l.X. (2.14)

Combining equations (2.12) and (2.14) the sum of the forces

in the x-direction is

7



dy

by 2

zx dy

dy 2

dx

db dx 2[

a x 2

\Vc dy A1  d

<ax 2 dyd

by 2

Figure 2.2 Stresses on a 2-D Control Surface
[Ref. 4:p. 15]
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L X + p(X) ++dxdy. (2.15)bx by

The rate of change of the linear momentum in the x-direction

assuming constant mass is mdu/dt.

du bu dx Ou dy Ou Ox
As - = - - + - - + - via the chain rule, and - U

dt bx dt by dt Ot Ot

'3y
and - = v the x-direction change in linear momentum forZt

particle is

du Ou 3u Du
m- = pdxdy(v- + v- + -). (2.16)
dt Ox 13y Z3t

Substituting equations (2.15) and (2.16) into the x-component

of equation (2.11) yields

Du u u D
pdxdy(u- + v- + p = X + + dxdy.(2.17)

Now, in order to have the entire equation as a function

of velocity the normal and shear stresses must be found in

terms of velocity.

By assuming a Newtonian fluid [Ref. 2:p. B-5] the shear

stress is linearly related to the rate of angular deformation

with fluid viscosity being the proportionality constant.

9



Zu bv
-= (- + - ) (2.18)

ay Zx

The normal stresses are equal, but opposite in direction

to the pressure when no shear stresses are involved. With

shear stress from viscosity it is assumed that the normal

stresses deviate from -P and that the deviation is

proportional to both a) the rate of linear strain in the

direction concerned, and b) the rate of volume deformation.

Therefore, the normal stress in the x-direction [Ref. 1:p. B-

10] is

3u 2 3u Zv
= - P + 2p(-) - -p.(- + -) . (2.19)

Z)x 3 Z~x Zy

Applying the conservation of mass, equation (2.9), equation

(2.19) simplifies to

ZDu
= - P + 2p(-). (2.20)

Dx

Substituting equations (2.18) and (2.20) into (2.17) and

dividing by dxdy yields

Zu Zu 3u u u v
p(U- + v- + -) = pX + -- (-P + 211()) + u-(- + -)(2.21)

Zx by 3t x x by ay Zx

After multiplying and rearranging the right hand side becomes

10



zP z2u Z.u 2 v
pX - - + 2 p- + p- + p

Ox ZX2 y2  y x

which is also equal to

aP OZu OZU Z 3u Ov
pX - - + p- + p-- + I-(- + -)

ax ODX2 O x ax zy

Again applying the conservation of mass, equation (2.9),

equation (2.21) becomes

3u au au OP 2u O2u
p(U- + v- + -) = PX - - + P(- + -). (2.22)

6x OY 3t Ox ax2 ay2

With v= /p = kinematic viscosity and neglecting the body

force, X, the two dimensional Navier-Stokes, conservation of

momentum equation for incompressible and constant viscosity

flow in the x-direction [Ref. 2:p. 436] i

Ou Zu Du i P ODu Z2u
- + u- + v- + V( + -). (2.23)

Ot ax dy p ax x2 :y 2

Similarly, in the y-direction the Navier-Stokes equation is

ODv v 3v I P Z) v 32v
- + U- + v- =- - + V(- + -). (2.24)
Zt Zx zy p Dy x 2 Y2

11



III. STEADY INVISCID FLOW

Although real fluids are viscous the major effects of

viscosity are concentrated in a region, or layer adjacent to

a body. Therefore, analyses of inviscid flow are useful and

serve as a good approximation to flow outside the boundary

layer and wake behind the body.

The justification for applying the results of perfect

fluid analyses to viscous flows was postulated by Ludwig

Prandtl in 1904 [Ref. 3:p. 299]. He stated that the effects

of viscosity on the flow around streamlined bodies at high

Reynolds numbers are effectively limited to a "thin" boundary

layer. The characteristic length to judge thinness is the

distance from the forward stagnation point to the point of

consideration.

A. VELOCITY POTENTIAL

For flow outside the boundary layer it is a great

advantage to simplify equations and develop a single

governing equation. With the assumptions of steady flow, no

energy transfer to or from the fluid, no body forces, no

shear stress (inviscid), and irrotational flow the velocity

potential, , is utilized [Ref. 3:p. 48]. 4, a scalar

function of spatial coordinates, x and y, is defined such

that

V = 7( (3.1)

12



and

30 DO
U - V (3.2)

Dx Dy

The importance of the velocity potential is that only one

equation is needed to describe the irrotational flow.

Velocity components are obtained using equation (3.2).

B. LAPLACE EQUATION

For steady, incompressible flows the continuity equation

(2.9) is

Du Dv
-+--= 0Dx 6y

Rewriting (2.9) in terms of the velocity potential the

equation becomes

D24' 024

- + - = 0 (3.3)
DX2 yY2

This form of the Laplace equation [Ref. 2:p. 81] is the

governing equation for steady, irrotational flow of an

incompressible fluid.

The importance of equation (3.3) is that it is linear

allowing for the principle of superposition. For example if

41, 2, 4,,3...are solutions of (3.3), then the sum € = 41 + 42

+ C, +...is also a solution of (3.3). Superposition of

irrotational, incompressible flows allow for the construction

13



of complex flows that are also irrotational and

incompressible.

C. SIMULATION (CONFORMAL MAPPING)

The inviscid flow about an airfoil can be obtained most

conveniently by means of a transformation, which starts with

a known flow about a simple contour, a circle, distorts the

contour into the desired shape, and simultaneously adapts the

flow to that shape. The transformation is accomplished using

a sequence of three conformal mappings [Ref. 1:p. 324].

The first mapping, necessary only when the airfoil

trailing edge has non-zero thickness, is accomplished using a

logarithmic mapping function. The airfoil is perturbed

slightly to make the upper and lower surface, trailing-edge

points coincide.

The second mapping analytically removes the trailing-edge

corner using the Karman-Trefftz mapping.

The third and final mapping transforms a quasi-circular

shape into a perfect circle using an iterated sequence of

Fast-Fourier Transform applications.

During the transformation of streamlines about a circle

to those about an airfoil, the preferable approach insuring a

transformed flow free from vorticity uses the complex

variable z = x +iy [Ref. 5:p. 285]. The transformation of z

to another plane is ,= f(z) = 4 + i . The potential

function, Q = + i(, is irrotational and incompressible in

both planes.
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The streamlines, k, and equipotential lines, 4, of a flow

in the z-plane will transform into another orthogonal network

of lines in the (-plane. Different magnification ratios and

different amounts of rotation at different points in the

field will, however, change the appearance of the flow

pattern from about a circle to about the airfoil.

The general transformation function whose derivative

dC/dz satisfies the requirement dC/dz approaches unity for

large values of z is

= Z + Col.z + CI/z + C 2/z
2 +... (3.4)

The requirement is necessary as streamlines are not distorted

a great distance from the body where the body's shape has no

influence on the flow.

The coefficients may be real, imaginary or complex. A

finite number of the coefficients are determined from the

specified normal velocity components equally spaced around

the unit circle, and from the Kutta condition which ensures

stagnation at the trailing edge.

While in the first iteration the normal velocities are

zero, and the solution for flow over a circle is used, the

subsequent normal velocity boundary conditions are determined

from the previous viscous-flow calculations using the

equation

15



d
Vn = -(u,6") (3.5)

ds

where u. is the velocity at the edge of the boundary layer

and 6* is the displacement thickness. Once the coefficients

are found, the real and imaginary parts of equation (3.4) are

equated yielding

4 = (x,y) and n= T(x,y).

As x2  + y2 = r2 the two equations of k and n are transformed

to

x = x(k,r 2 ) and y = y(q,r 2 ).

Then x2 and y2 are added to yield

x2 + y 2 = r2 = tx(k,r 2)]12 + [Y (n, r2)]j2. (3.6)

After dividing both sides by r
2

1 - x(4,r2 )  2 + w y(q,r )  2. (3.7)
r 2  r2

Then each circle of radius, r, in the z-plane is transformed

to the proper shape in the c-plane to describe inviscid flow.

1. Transformation of Velocities [Ref. 5:p. 2911

In the z-plane as Q(z) = *(x,y) + i((x,y) the

velocities are defined by
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dQ(z)
= V. - iVy (3.8)

dz
where,

V = V1 + iVy.

In the C-plane the velocities are also found

dQ
- = Vt - ivn (3.9)dC

where,

Vc = Vk + iVr.

The velocities in the two planes are equated by

dQ dz V.- iVy
Vt - iv n =- .- (3.10)

dz dC dC/dz

The pressure in the transformed stream is related to the

stream velocity through Kelvin's equation

1 1 2
-p V 2 + p = Constant = - p Vc + P1 . (3.11)
2 2 1
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IV. VISCOUS FLOW

A. DERIVATION OF BOUNDARY LAYER EQUATIONS

The previous analyses provide a valid solution to the

flow outside the boundary layer. Within the boundary layer

however, the effects of viscosity cannot be neglected. In

laminar flow governing equations can be obtained by

simplifying the conservation equations. In turbulent flow,

however, the number of variables outnumbers the equations.

Great dependence is then placed on dimensional reasoning and

on hypotheses suggested by experimental results.

The most important deduction from Prandtl's thin boundary

layer theory is that static pressure can be considered

constant across the boundary layer [Ref. 3:p. 299].

3 p
- =0 (4.1)
by

As the boundary layer thickness, 6, is small, d6/dx is also

small. Streamlines are then only slightly curved and the

radii of curvature, R, are large. With a large R the

equilibrium condition

3P u 2

- =

by R
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illustrates that 3p/ ay will be very small and can be

neglected. Experimental results confirm that ap/ ay may be

neglected even over surfaces of small radii of curvature.

Also, in a thin boundary layer with a slowly changing

thickness 3v/;Zx is much smaller than 3u/Zy. The significance

is then that the normal shear stress may be neglected when

compared with the viscous shearing stress. Equation (2.18)

then becomes

Zu
,= -. (4.2)

With this simplification the approximate equation for

flow in the two-dimensional boundary layer can be found

directly. Newton's second law of motion applied to a fluid

element of mass may be written

au au Zu ap &C
pdxdy(- + u- + V-) = - + - )dxdy (4.3)add(t ax aY Zx zY

as illustrated in Figure 4.1. Substituting equation (4.2)

and dividing both sides by dxdy yields

3u au au ap Z) au
p(_ + U- + V-) = (- - + -- (J-). (4.4)

at ax ZY ax a yay

In terms of kinematic viscosity equation (4.4) becomes

au 3u au 1 ap a2u
+ U- + v-: - -- + V_. (4.5)

at ax ay p ax 3y2
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(awu + - dy)dx y
y

----u > > x

dy p
Pdy -(P + - dx)dy

dx x

acydx

Figure 4.1 Forces Acting on an Element in the Boundary Layer
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This equation is the boundary layer equation of motion and is

identical to the equation found using an order-of-magnitude

analysis [Ref. 3:p. 443]. Equation (4.5) is also nearly

identical to the Navier-Stokes equation (2.23) with the

exception that the term v32u/0x2 is deleted. The order-of-

magnitude analysis suggests that this term, v32u/Zx2, may be

neglected compared to vE 2 U/ ~y2. Combined with the

continuity equation Zu/Zx + Dv/Jy = 0 (2.9), equations (4.5)

and (4.1) are known as Prandtl's boundary layer equations

[Ref. 2:p. P-9].

For an incompressible flow, there are three variables, u,

v and p, but only two equations, (4.5) and (2.9). The

equations may be solved though, by first determining p as a

function of x using inviscid methods, setting Dp/Dy = 0 in

the boundary layer, and then solving (4.5) and (2.9) for the

velocity distributions.

B. TURBULENT FLOW

Turbulent flow as differentiated from laminar flow is

characterized by fluctuating instantaneous properties which

greatly increase the complexity of the problem. A very

useful simplification to the turbulent problem is then the

use of time-averaged values, denoted by a bar over the value.

Instantaneous values are indicated by the prime [Ref. 4:p.

23].
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u u + U'

V = V + V'

p =p + p'

The continuity equation containing total values becomes

-x(u + u') + -(v + v') = 0.

Simplifying the equation becomes

(u) + -(u') + -(v) + -(v') = 0b x bx by by

with

-(u) = (u) and -(u') = -(u') = 0
Dx bx Dx x

-(v) = -(v) and -(v') = -(v') = 0.
ax bx ax ax

The time-averaged continuity equation for turbulent flow is

now

-(u) + -(v) = 0 (4.6)
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Applying total values, the steady version of the Navier

Stokes equation (2.23) becomes

D(u + u') 3(u + u') 1D(P + p')
(u + u') + (+v') -

Zx zy p Ox

Z2(u + u') Z2(u + u')
+ v + 0 yu (4.7)

After simplifying, the time-averaged Navier-Stokes equation

for turbulent flow [Ref. 1:p. C-10] becomes

(u)1 p2 u 2 u
u-(u) + = - + v(- + -- )
Ox 3 P x DX2 Zy2

3x N(u' )  - (uIvI). (4.8)

The new terms, O/Zx(u12) and /O/y(u'v'), which correspond to

normal and shear stress, are called Reynolds

stresses. The similar y-component terms are a/Zy(v2 ) and

Z(v'u' )/)x.

C. TURBULENCE MODELS

The time-averaged Navier-Stokes equation is nearly

identical to the original equation except that the

instantaneous values are replaced by the mean or time-
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averaged values and two additional terms involving

fluctuating velocities, u' and v', appear. An interpretation

of these two terms compares them to the previously existing

terms D2 u/Ox2 and 2ju/ZY2. The right hand side of equation

(4.8) less the pressure term, and after multiplying by

density, becomes

11- + 11- - p-u 2 -

Dx2 Ey2 Zx Zy

or

O Oii - 0 Oi
_(p- - pu'12 ) + -(_-- - pu'v').

;Dx x Dy Zy

As each term has the dimensions of stress, and vi(;Du/0y) is

part of the laminar shear stress T.., it appears that the

term -pu'v' represents a turbulent addition to shear stress

[Ref. 2:p. T-2]. Now, this shear stress is really a vertical

mixing of horizontally, travelling fluid particles. A model

of this mixing then calculates the rate of momentum transfer

involved.

1. Prandtl's Mixing-Length Model

To predict the turbulent stresses Prandtl assumed

that turbulent fluctuations are primarily the result of the

mean velocity differences between two layers in the flow.

Therefore, u' is proportional to Ou/Zy with the

proportionality factor having the unit of length.
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W12)6 = a- (4.9)Oy

Also, assuming that v' is of the same order of magnitude as

u' at a particular point,

(v'2 )6 = b-. (4.10)

Substituting u' and v' into the turbulent shear stress, Tr,

is

- pu'v' = - pab(-)(-). (4.11)

As a and b are both unknown constants of length, they both

may be replaced by the "mixing length", 1, the hypothetical

distance between the two layers involved. The turbulent

shear stress is now

T = p12 - - (4.12)

1ay Dy

which insures the correct sign.

2. Eddy Viscosity - Cebeci-Smith

The turbulent addition to shear stress may also be

modeled in terms of "eddy viscosity". As laminar s'ear
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stress = T,, = U(Ou/ay) = pv( u/ Z6y, turbulent shear stress

may be equated

_u
- pU'V' = PVt-, (4.13);6y

where vt, the eddy viscosity is empirically determined.

The method used here is that of Cebeci and Smith as

modified by Cebeci, Clark, Chang, Halsey and Lee, [Ref. 1:p.

327].

Eddy viscosity by Cebeci is represented by

{0.4y[l - exp (- )]}2 - y =- (0 s y : Y.) (4.14)
A y

Vt

a (u, - u)dy t - (y.- y 5 6) (4.15)

where

26v 1
A - and Y=

1 + 5.5(y/5)6

L Zmax

The distance from the body y, which is less than the boundary

layer thickness, 6, is the distance where the two equations

(4.14 and (4.15 give the same resultant vt.
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The intermittency factor, Y,,, which indicates the

local fraction of turbulent flow to total flow, is given by

Yt= 1 - exp G(x - xF) . (4.16)

L jxr~- Uinj

The location of the start of transition is xt=,, and the

empirical factor G is

1 U. 3

G - - R- 1 "3 4  (4.17)
1200 v2  M t=

where Rxct= is the transition Reynolds number

Rxtr. = (u.x/v)t=. (4.18)

In equation (4.17) the empirical constant GYt - =

1200, was used by Chen and Thyson [Ref. 4:p. 327]. Values

lower than 1200 may give better results at low Reynolds

numbers as will be discussed in Section VII.

The expression for a is

0.0168 0.0168
a - - (4.19)

F2 .5  2.5

bu/ayJ

The non-dimensional factor F represents the ratio of

the product of the turbulent energy by normal stresses to
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that by shear stress evaluated at the location where shear

stress is maximum.

(u'2 - v u )ZU/aX
F= 1- (4.20)

- u'v' bu/ y

According to the data of Nakayama [Ref. 1:p. 327], B can be

represented by

6
RT < 1

U 2 - V ' 2  1 + 2R(2 - Rr)
B =

U'V' 1 + RR 1
--- - UIVI)M^X R-r 2 1

R-r

where RT = Tw/(- uv')mpx and iw is the wall (body) shear

stress.

D. TRANSITION

The location of the onset of laminar-to-turbulent

transition when not found experimentally is determined

empirically. The method used by Cebeci [Ref. 4:p. 333] is

the criterion proposed by Michel.

At the point of transition the Reynolds number based on

momentum thickness, e, is related to the Reynolds number

based on the coordinate position, x.
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22400
1.174 (1 + - )R..,, 0.46 (4.21)

where

R.,, U.(x/v) and Retza- Ua(8/v).

In the Cebeci Code the transition may be determined in

the following ways:

1) The points of transition are calculated using Michel's
criterion.

2) If laminar separation occurs forward of the criterion
points, Michel's criterion is disregarded and
transition is redefined at the separation point.

3) The transition locations may be specified by the user
provided stall is not computed.
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V. VISCOUS METHODS

Momentum transfer in fluids is accomplished by

hydrostatic pressure and viscous stresses. When viscous

stresses are negligible, fluid behavior can be predicted by

inviscid flow methods as stated in Section III.

Viscous stresses caused by a variation in velocity in a

direction normal to the flow are called shear. The most

common shear is that found in the boundary layer between a

displayed stream and the solid surface. With the "no slip"

condition fluid velocity is zero on the surface, but the

velocity gradient is not so constrained. From the body along

its normal direction the fluid velocity asymptotically

approaches that of the free stream.

As mentioned in Section III, Prandtl hypothesized the

division of the flowfield into the two regions, the boundary

layer where viscous effects cannot be neglected and the

region outside the boundary layer which may be considered

inviscid.

This hypothesis allows for the use of the parabolic

boundary layer equations of section III instead of the

elliptic Navier-Stokes equations. Depending on the boundary

conditions, solutions fall into three methods [Ref. 6:p. 13]:

1) The direct boundary layer method. This method uses the
"no slip" condition, where normal and tangential
velocities are zero at the surface, and a
pre-determined velocity is specified at the boundary
layer edge.
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2) The inverse boundary layer method. Boundary conditions
are replaced by wall shear or displacement thicknesses.

3) The interactive boundary layer method. The edge
boundary condition drives a combination of displacement
thickness and external velocity.

Methods one and three will be discussed as they apply to

the Cebeci Code.

A. DIRECT BOUNDARY LAYER METHOD [Ref. 6:p. 13]

This method for solving the boundary layer equations is

used only near the leading edge where the viscous effects are

small. Initial conditions are generated at the stagnation

point and the equations are integrated around the leading

edge. The numerical solution utilizes a finite difference

method where the continuity and momentum equations are

redefined as a system of linear algebraic equations.

The method begins by describing steady, incompressible,

2-D flows in a curvilinear coordinate system where x is

directed along the airfoil surface and y is perpendicular to

x. The boundary layer equations with the turbulent Reynolds

stress are

- + - = 0 (5.1)
ZDx 3y

-- - + -- [I- - pu'v'] = u- + v- (5.2)
p Zx p Dy Dy x ay
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-P
-= 0. (5.3)Dy

where the order of magnitude of any turbulent stress is

assumed to be that of its laminar stress. The boundary

conditions are:

at y = 0; u = 0, v = 0 (5.4)

at y = o; u = U.(x) (5.5)

The eddy viscous stress previously defined is reprinted as

ZDu
PU'V' = PV'-. (4.13)

Also, the pressure gradient term may be written

I Z)p Zbu.
- - = u'- (5.6)
p ;x ax

Therefore, the momentum equation (5.2) may be rewritten as

b-U + DEU . u. b aU
u- V-= u -+ - (b---) (5.7)
Ox ;y Dx Dx ;y

where b = 1 + vt/v and the boundary conditions are

at y = 0; u(x,0) = 0, v(x,O) = 0 (5.8)

at y = y.; u(x,y.) = u.(x).
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1. Falkner-Skan Transformation [Ref. 6:p. 14]

To solve the new boundary layer equations the

Falkner-Skan transformations are used, which reduce the

number of variables, and scale the normal coordinate y and

the stream function ( with reference to the external

velocity.

n= y -(5.9)

C(x,y) = (u. x) • f(x,l) (5.10)

The continuity equation is automatically satisfied

using the stream function (u = 34/Dy and v = -3/Dx).

Therefore, only the momentum equation needs to be solved,

which after transformation becomes

m + 1 3f' Df
(bf")' + ff" + m[l -(f') 2 ] = x(f'- - f"-)(5.11)2 Dx ZDx

where m = (x/u.)(du./Ox), a dimensionless pressure-gradient,

and f' = 3f/3n.

This equation (5.11) is a third order partial

differential equation, and the solutions are "non-similar" as

they are functions of both x and n. If the solutions were

only a function of q, then the right hand side of the

equation would equal zero, and the flow would be "similar"
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[Ref. 1:p. v-10]. To solve equation (5.11), a numerical

solution is needed such as the "box" method.

2. The Box Method

The box method, developed by Keller in 1970 [Ref.

1:p. 331], is a widely used methods for solving non-linear

differential equations. The steps of this method include the

conversion of the Falkner-Skan, transformed, momentum

equation into a system of first-order partial differential

equations. This non-linear system, after conversion from a

continuous function to discrete, is linearized by Newton's

method. The block elimination method is then used to solve

the linearized difference equations of the boundary layer

problem.

The third order momentum equation (5.11) is converted

into a first order system with the addition of the dependent

variables U and V [Ref. 6:p. 14].

U = f' (5.12)

V = U' = f" (5.13)

m + 1 ZU Zf
(bV)' + -fV + m(1 - U2 ) = x(U- - V-) (5.14)

2 Ox 3x

The boundary conditions are

at T = 0; U(x,O) = 0, f(x,0) = 0

at 1 = T.; U(x,iy.) = 1
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The solution domain, 0Sxxx and 0qnJ, of the

continuous functions f, U and V is then covered by a

rectangular grid to facilitate the problem solving with a set

of discrete values. This grid is shown in Figure 5.1.

The subsequent notation [ ]A is used to represent the

quantities of f, U or V at the point (x±, nj).

All quantities can then be approximated by network

coordinate values. Using the grid system, the solution of

the parabolic layer equation at a certain streamline position

depends solely on the solution of upstream positions, while

no downstream influence needs to be considered. As

calculations proceed from the stagnation point in the

downstream direction, the overall solution can be obtained

incrementally. Hence, one step of the solution procedure

sets up the governing equations for a column of grid boxes in

the sub-domain

xj_25x~x, and 05,n

and solves for the values of the downstream grid position.

The x-grid position currently solved for is then assigned the

superscript "i" while "i-I" represents the previous position

of known properties. Using coordinates of box midpoints and

centered-difference derivatives, the equations are actually

satisfied midway between the grids.

Equations (5.12) through (5.14) in terms of finite

differences [Ref. 6:p. 15] are now written
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ri derivatives only
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Figure 5.1 Rectangular Grid for Finite Difference
Approximat ion

36



i if. - fjI u
j - I (U. + U_ (5.15)

i i.
U. - Uj_

- (V. + V. (5.16)

(bV)j - b -1  + 1
+ -. +- (fV) . +hj 2

. (V. f i =-
F1 k1

j 2v- i - (5.17)

where the ordinary differential equations, (5.15) and (5.16),

are centered about (x,, rJ--) and the partial differential

equation, (5.17), is centered about (X±t-, Tj-.).

The boundary conditions are

U 0, fl - 0 and U =1

Equations (5.15) and (5.16) are the centered difference

derivatives.

3. Newton's Method [Ref. 6:p. 15]

This set of finite difference equations is nonlinear

with combinations of unknowns. Newton's method is therefore
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needed to solve the system. The variables are linearized

using an iterative procedure with preceding values.

fill = fi-l 6 i.1 and fi,K f i,K-i + 6fi.K for K_2
J fJ J )

where, 6f' K<< i -iJ J

- + au .1 and UiK U i K -1 + 6 i ' K for K_2

where, 6U i*K<< ui.K-S J

V i'I = vi-+ 6v i.1 and Vi K = Vi K -1 + 6Vi "K for K_2J J J J j

where, 6 vK<< Vi.Ki

K is the iteration counter. After substituting these values

into equations (5.15) through (5.17) and neglecting the

i,K i,K i.K
quadratic terms of 6f , 6U and 6V , the system of

unknowns is then linear.

6f6f i- i.K + u i K- f i.K-1j - 1 - -- + j_1 )  fj-1

+ h Ui.K-1 (5.18)
i i-i

6UiK _ 6U '_ i.K _ ( V : K) = ui'K-i1 - ui.K-1
J j 1-7 T

i.K-1 (5.19)
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(S)i.K i.K +(. i.K 6viK +(,)i.K 6f i.K

(4 .K &f *K+(S-,) . 6U i. + (Sf6 ) i 6U J. = (r 2 ) .K (5.20)
(S. j-i1 j J j j-1

where

i .K_ j + 1-2 (fi.Ki1 _ fi -t) + m+ f i.K-1
(S hi nr j _

i K-4i

i.K ___I -.- i-i m 1+ 1 i.K-i
(S.) ( = - +2 (-l.K + f

i.K_ (V i.K-i -1 + + 1 vi.K-1
(S,). IVA +v I) + --- 13 -- j-2,-

i .K J - 7 iKi i.-1+1 i.-
(S5) + m'~ (V )+V.u

1F j- 2 j-

i K) 1 K-1 ii. ) K i .

(S 5) j- + m + I (V)U.K-

h K- -1--i

(S6). - ( K-) +- Vi K- .
-- T-1

i K-i bV)39



+ i-i fi.K-1 i-I vi.K-1v f .: f,.

(bV) (bV)j- 1  + mi-l+ 1 fv)i-I

x i- i- i-i xi-(V i-I i-I

-Ti +  ) - I -

+ 2mi - }

The boundary conditions are

6fo = 0, 6U0 = 0, 8U1 = 0

4. Block Elimination Method [Ref. 6:P. 17]

The system of equations are iteratively solved until

i.K i.K i.K
bf , 6U and 6V become small enough to be neglected.

J J J

The solution method is that by Keller and is called the Block

Elimination Method. In this method block-tridiagonal

matrices are composed of blocks. Only those blocks on the

main diagonal and on the two adjacent diagonals are non-zero.
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iiKi ii. iK 1Ki.
[Bj_ 1  [Aj[C1 [jI 1  {8jlI } {rj_ }

"K [K i.K i.K} i.K
[Bj K [A i I [C i. I {8.}{r

B.j ] [ ] {rj .

i K i K iK] fi.K i K

[iK ]Ai.K I i.K i.K

where the blocks are 3x3 matrices

-hi/2 0

[ . I (S )i.K (S )i.K (S )i.K 2 jS -
[AJ K] L S3)j (S 5 )j S)j2jK-

0 -1 -hj+/2

-1 -hj/2 0

B .I (S )i.K (S )i.K (S )i.K 25j<5J
[B.i K  = S ) S )j(S 2 )j

0 0 0

0 0

[C.K 1 0 0 0 I-jSJ-I

0 1 -hj+/2

o
[A i"i K ] = 0 1 0

0 - -h2 /2
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-hj1/2 0 -

[i.K ( ,)i.K (S )i.K ( : i.K

0 0

The right-hand sides of the equations are

(r-)i.K =i.K-i i.K-1 + hU.K-I 2hJ
j -j1  - I j-1

iK
(r2)i ' = {As defined in equation (5.20)} 2 3 J

(r3 ).i K = U - uiK- vi.K-I 2 h J
j 1 + +

(r)i.K, i.K i.K 0= ,= 0, (r3)j =0
1 '1 '

The block elimination method solves the linear

equations with two steps. The forward step eliminates the

lower diagonal of the tridiagonal matrix. The reverse step

solves the remaining system from bottom to top.

B. INTERACTIVE BOUNDARY LAYER METHOD [Ref. 6:p. 181

As the direct boundary layer method is, as previously

stated, restricted to regions of small viscous effects, and

integration of the boundary layer equations fails at points

of zero skin friction, a method is needed to integrate the

boundary layer through the point of emerging reversed flow.

This method must also account for strong interaction effects
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due to separation and rapid acceleration of the flow

downstream of the trailing edge.

The interactive method fulfills these requirements by

treating the external velocity and displacement thickness as

unknown quantities. Reflecting the elliptic nature of the

outer flows, an additional unknown is introduced, but the

solution can be obtained using either the eigenvalue or

Mechul function methods.

The Mechul method is preferred as the eigenvalue method

involves nonlinear problems. In this method the edge

boundary condition of the direct method is supplemented with

the interactive boundary condition. The unknown external

velocity is related to its displaced and perturbed

conditions. The unknown functions u(x,y), v(x,y) and u.(x,y)

are represented in this system of boundary layer equations

3u 3v
- + - = 0 (5.22)
Ox by

bu 3u au. 3 DU
u- + V- = U.2- + v- (b-) (5.23)
Zx by Ox by bybu.

-= 0 (5.24)
by

where pressure in the y-momentum equation is expressed in

terms of the external velocity.

The Mechul function approach assumes that the external

velocity, u., is a function of two arguments, x and y,

allowing for an easy setup of finite difference equations,
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and avoiding nonlinear eigenvalue techniques. The velocity

components u and v are required to satisfy the no-slip

condition at the surface, and u must merge smoothly into the

edge velocity.

at y = 0: u(x,0) = 0, v(x,0) = 0

at y = y.: u(x,Ye) u.(x,Y.), Ue(X,Y.) =

1 d dk
- UO + - (u.6*)_n " x-&

U.x(x) is the inviscid edge velocity and the last term,

the Hilbert integral, approximates the viscosity induced,

perturbation velocity.

Interactive methods are useful in both attached and

separated regions, while direct methods fail at the onset of

reversed flow, and inverse methods converge poorly. Only at

the stagnation point singularity cre interactive methods

prohibited. The transformation of the partial differential

equations into a linear system of algebraic equations is very

similar to that of the direct method. The normal coordinate

y, streamfunction +, and the external velocity u. are scaled

with reference to a constant velocity u., and the local

streamwise coordinate x.

n = y(5.25)
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C(x,y) = (uovx)6 f(x,q) (5.26)

u°(x,y)
W(X,i) = (5.27)

Uo

Uo is the vector mean velocity. U. cannot be the reference

velocity as for Falkner-Skan variables because in this case

the external velocity is unknown. The first order, semi-

transformed coordinate system with additional variables U and

V is

U = f, (5.28)

V = U' = f" (5.29)

1 w u Df
(bV)' + - fV + xW- = x(U- - V-) (5.30)

2 )x x Dx

W1 = 0 (5.31)

and the boundary conditions are

at T) = 0: U(x,0) = 0, f(x,0) = 0

at TI = q.: U(x,T.) = W(x,I.)

u.B(x) 1 d
W(xr.) = + - ()I[w(kq.)n.

Uo n dk Uo

d4

X-4
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The conversion of the flowfield to discrete values is

very similar to that of the direct method with an orthogonal

grid, central differences, and two-point averages. In the

interactive method though, the solution proceeds in the

downstream direction only. As only downstream disturbances

are accounted for, backflow causes numerical instabilities.

A stable integration can be accomplished though, with the

assumption that backflow velocities are comparatively small.

The FLARE approximation (Flugge-Lotz and Reyhner), [Ref. 6:p.

19] sets the streamwise convection term uZku/Zx equal to zero

in regions of backflow.

Iif U. >
FLR 1

0if U <0

The finite difference equations of the interactive

boundary layer with the "on-off switch" are now

i _ iu
fj j-1 1 (Ui + )l (5.32)

fi - fi
j j-1 1 i i

-(V i + V ) (5.33)

(bV) (- i-i- i - Wi -h j 1 + 1(fV)_ + x (W 5.3

(bV) -(yk- ~ +x~( i i-1
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X [FL i ( U U(Vi-I f' - fi

i i
w - -i 0. (5.34) and (5.35)

The boundary conditions are also expressed in terms of

grid or nodal values. A panel method type approximation

leads to

U =0, 0

Ui Wi +( i _fi
S it Wj= gi + cii(Wjlj -

where g± and cii represent a parameter and the diagonal

element of the interaction matrix, due to a discrete

approximation to the Hilbert integral. To keep the number of

generated terms to a minimum, ordinary differential equations

lake the y-momentuin equation are centered about the

downstream face, and partial differential equations like the

x-momentum equation are centered about the middle of the box.

The unknowns occur in vectors of four components

(i ji vi i(f U ,Vi ,W' )

The J quadruplets of unknowns match with 4J equations,

including 2(J-1) auxiliary relations and (J-i) x-momentum and

(j-i) y-momentum equations. Each equation corresponds to one
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of the (j-i) grid rectangles and four boundary conditions.

The system is linearized around the values of the preceding

iteration (counter K-i) and a system with Newton iterates

i.K i.K i.K i.Kbf', 8ui. , 8V ,8W., emerges.

6fi.K _fi.K hjA i.K +6i*K) =i.K-1 _ f i.K-1
i j-i -- "(U K+ j l= f

+ h Uj K-i (5.36)
j i .-

iK iK _h _(6v iK + 6V iK = Ui , K-I _ i.K-1
+ j-1 j-i V-i ' -

+h. Vi.K-i (5.37)

i.K i' K i'K i.K i.Kfi.K

(S-) . &Vjl + (S-) j 8Uy + (S.).bf. j- +

J J j j-I + ( )j j

(s4 )i.K~fi.K + S .~Kbui - K + (s6 )i'Kbu'K +j j-I + (S) J j j-I

(S 7 )i.K 6WiK + (S)i.K6wiK = 6W.K (r)1K (5.38)J j j -i 1 =  = (

6w Wi.K = Wi K-i wi.K-I (5.39)

- j j-I 

where

i * K-

(S) .K -T + (f • _ ) + f
j hj -48
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i. K b K- X - (fiI~K-l fi-i) 1 i.K-i(S2) h + T 1 - )+

i. 1i 2XK- i-i Ii .Kl - i

iK xi- - i-i 1 i.K-1
(S)j- k Vii + j-1 +4: j1

x.K i-I 1 i K-i
(S.) = - K (Vu FLKi -

( 5)i.K 1 +vj i.-1 VL
3 i - i -

ibV K *1 &K-1 (b i.-

1. 3 -iK-

iK-
*S) ( K [(2) K-1~ _ Uj.-X1 L

J T7 i-iJ-

i K ~ij1 ii K-
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i-I V I(bV) i -  (bV) -- ' i-I

f 1 -- { *h- j-1  + (fV) i1

J-i 7- J h1

- (-.4 [(W2)j_- (U2)j_ FLR _
i

+Vi-1 f i-I
+ vj f1]}

The boundry conditions are

6U i .K = 0, 6fl'K = 0, 6Uj "K 6wi K = 0

•. I )i.K gi i.K-I , -' i .K-1
8fg + ( - - fj -(1 - T ) Wj

1 li C ii

The overall procedure is a repetitive, linear approach to

solve the nonlinear system. The numerical solution is again

obtained using the block elimination method by Keller, except

that unlike the direct method the vectors of the unknown

Newton iterates are four dimensional.

(6.K) 6i,6 } K, &u. &i.K, '" }iK

and

i.K iK iK i.K i.K}Tr , (r2)0 , (r3 )j , (r.)j
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In matrix-vector form

[A"K ICi K I 8i.K (riK[A K I [C i K  {I [C} {r1 K

i.K i.K iK i.K i K[B[_I  [A ' [C2  ] [6j_ I } {rj -}

[B iK I i.K I i-K i.K iK iK i.J iK

The 4x4 matrix blocks are

-1 -hj/2 0 0
Ki.K i.K i.K i.K

[A i.K = (S3) (Ss) (S i) (ST) 2-<j-<J-1

0 -I-hj+I/2

0 0 0 0

-1 -h./2 0 -1

i.K] i.K i.K i.K i.K[Bj = (S4)j (S6). (S2). (Se)j _j_

o 0 0 0

o o 0 0

iKJ 0 0 0 11~-
[Ci.K = 0 0 0 0 1_<jJ-j

0 -hj+/2 0
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flT 0 0 0

0A -1 -h 2/2 0 ]
100 0 -1

-- h /2 0 0rAi. S3) iK (S5) iK (J)iK (S, .
1 0 0 1/c i- T

o00 -1 i

i. K i K-1 f fl.Kl1 + h v i.K-1 j
(r1 1 = i i-

(r2 ) i.K = As defined in equation (5.38)) 25j:5J
J

(r)i.K Ui.K-I i.K-1 +h vi.K-i 1:5j:5-1
J J - j+1 j+2

(s)i.K Wi.K-i i.K-1 s-
J J j+1

(rj)j =. 0, (r.)1 =. 0

gr3) 1. K = g . - C (I K-iw i.K-1

and

(riK 0
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VI. INTERACTION METHODS [Ref. 7:p. 79)

Interactive methods couple viscous and inviscid flows and

are intended to compute through regions of flow separation.

Given their levels of success, these methods have become

inexpensive alternatives to the Navier-Stokes solvers.

The simple, classical method of computing the viscous

flow over an airfoil is:

1) The velocity distribution is computed for irviscid
flow.

2) The inviscid velocity is input to the viscous flow.

3) The viscous flow is computed by integrating the
boundary layer equations.

Now, this method is good at predicting lift and drag, but

only if the flow remains attached, as information is

transferred only once from inviscid to viscous regions. For

more complex flow multiple information transfers are

required.

Close coupling is needed to compute flows with separation

or separation bubbles. A better method than the previously

outlined classical method for exchanging information between

viscous and inviscid regions is interaction. The different

elements of interaction include direct and inverse, inviscid

and viscous flow solvers. Table 6.1 illustrates the

different elements.

The disadvantage of the direct boundary layer method is

that the equations become singular at the point of
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separation. The point of separation may be integrated

through, however, if the external velocity is computed with a

predetermined displacement thickness. This method is known

as the inverse boundary layer method.

Another problem associated with separation is the

instability of numerical methods which prohibits downstream

marching in regions of reversed flow. In the situation where

flow is reversed the FLARE approximation is used, where the

momentum transport term uu/Dx is neglected. This

approximation is not necessarily accurate, but it does allow

for continued calculations.

Four interaction models have been developed to calculate

combined inviscid and viscous flows. All procedures solve

the Laplace equation for inviscid flow and the boundary layer

equations for viscous flow. The four models are the direct,

inverse, semi-inverse and viscous-inviscid interaction

methods. Each model is subject to different boundary

conditions.

The first three models are considered weak interaction

methods in that they provide only a loose coupling between

viscous and inviscid regions. The two regions are treated

alternately. As indicated in Table 6.1, the viscous flow

solver calculates the flow in the viscous region and produces

the boundary condition of the inviscid region. The inviscid
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TABLE 6.1 INTERACTION ELEMENTS

BOUNDARY CONDITION

Flow Direct Inverse

Inviscid * Zero normal * Prescription of
velocity at velocity distribution
the surface

Viscous * No slip * No slip condition
condition

* Prescription of * Prescription of dis-

external velocity placement thickness
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flow solver calculates the flow in the inviscid region and

produces the boundary condition of the viscous region. The

weak interaction methods process either displacement

thickness or external velocity as an input and the other

quantity as an output.

In contrast, the fourth method, the simultaneous

interaction method, is considered a strong interaction

method. A strong method calculates displacement thickness

and external velocity simultaneously. The foundation of the

four interaction methods are discussed below.

A. DIRECT INTERACTION METHOD

The direct interaction model is composed of direct

inviscid and viscous flow solvers as indicated in Figure

6.1a. The external velocity distribution is calculated first

by inviscid computations. The displacement thickness, 6*, is

then calculated using the external velocity as a boundary

condition. An updated shape of the displacement body is then

computed, and all steps are recomputed in order until the

results converge. As previously stated this method breaks

down at the point of separation, and is therefore not useable

in regions of separated flow. However, it is very useful

where viscous effects are small. The direct method is used

in the Cebeci Code around the nose and stagnation point of

the airfoil.
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Figure 6.1 Organization of Interaction Methods
a) Direct, b) Inverse and c) SeMi-inverse
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B. INVERSE INTERACTION METHOD

T'is method was developed to circumvent the singularity

problems near separation. According to Figure 6.1b it uses

inverse inviscid and viscous flow solvers. Because of the

inverse method's very slow convergence, though, it is

suitable only at singular points.

C. SEMI-INVERSE INTERACTION METHOD

The semi-inverse interaction method incorporates direct

inviscid and inverse viscous flow solvers such that

displacement thickness is input to both solvers as shown in

Figure 6.1c. External velocity is output from both solvers.

Convergence is ensured with the use of a relaxation formula

which redefines the displacement thickness distribution.

Ue.,(X)
6.w*(X) = 8oia *(X)[l + W( - 1) (6.1)

Uex(x)

where w is a relaxation parameter.

The numeric.-1 weaknesses of the direct and inverse

methods are improved, but inviscid and viscous regions are

still loosely coupled.

D. VISCOUS-INVISCID INTERACTION METHOD

The viscous-inviscid interaction method ensures a strong

interaction between the outer, inviscid, and inner, viscous,

regions. Both the external velocity, ue(x), and displacement

thickness, 6*, are unknown quantities. Convergence is
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ensured through the.interaction law which uses the blowing

velocity concept.

The equations are solved through successive sweeps over

the airfoil surface as indicated in Figure 6.2. For each

sweep the external velocity for the boundary layer equation

is written

u.(x) = u-T(x) + 6u,(x) (6.2)

where,

U,,(x) is the inviscid velocity

and

u.(x) is the perturbation velocity due to the
boundary layer displacement.

The perturbation velocity is modeled by the interaction

law with the help of blowing velocities. The displacement

effect of - boundary layer is obtained by ejecting fluid at

the surface of the airfoil as shown in Figure 6.3.

With a properly arranged blowing velocity source

distribution on the airfoil surface, the virtual displacement

body becomes a streamline.

In determining the source strengths, the displacement-

body tangential flow condition is represented by

v(x,6*) d6*
- (6.3)

u.(x) dx
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Figure 6.3 The Blowing Velocity Concept
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Model simplifications are achieved through the use of

these thin airfoil approximations:

1) The u-velocity component is considered invariant across
the boundary layer, as the displacement thickness is
thin enough to consider the differences negligible.

2) The blowing velocity, v(x,O), is one half the source
strength, a(x), on an airfoil represented by a straight
line.

O(x)
- (x,0)

2

J- 6V
= v(x,6*) - - dy

1 6y

d6* du.
= u- + - 6*

6x dx

O(X) d
- = - (u.,*) (6.4)
2 dx

where (d/dx)(u.6*) is the blowing velocity.

The blowing velocity once obtained from the source

strength is then related to the perturbation velocity, 6u,,

through the use of the Hilbert integral.

1 r)C (k
6u. - - d (6.5)

2rT Ju, X-&

After substituting equations (6.4) and (6.5) into (6.2)

the interaction law is obtained.
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1 f
u.(x) = U.1 (x) + - J d(U.*) (6.6)n x. dk x-k

The numerical implementation of the interaction law

requires some discrete approximation of the thin airfoil

integral, equation (6.6). Similar to the panel method, a

piecewise approximation of the continuous blowing velocity

d(u.6*)/dx allows for piecewise analytical integration.
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VII. AIRFOIL STUDIES

Cebeci's interactive aircode was applied to four airfoils

over a wide range of Reynolds numbers and angles of attack.

The computer program results were then compared to reported

experimental data. Unless otherwise stated, 20 iterations

were used for each computer run, and laminar-to-turbulent

transitions were determined internal to the program. The

significance of the number of iterations will be discussed

later in the section.

A. NACA 663-018

Computer results of the NACA 663-018 airfoil section were

compared to the test results of Gault [Ref. 8], which were

performed in the NASA Ames Research Center 7-by-10-foot wind

tunnel. The laminated pine model with a 1/8 inch-thick

mahogany plywood veneer spanned the 7-foot dimension to

simulate two-dimensional flow.

Total-and static-pressure surveys, hot-wire-anemometer

observations, and detailed pressure-distribution and liquid-

film measurements were made in regions of separated flow.

The measurements were obtained for a wide range of angles of

attack and for Reynolds numbers from 1.5 to 10 million. A

main purpose of these measurements was to identify locations

of separation, transition and reattachment.
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Using the Cebeci Code the 663-018 airfoil shown in Figure

7.1 was initially tested for section lift coefficients.

Comparisons were made with Abbott and Doenhoff [Ref. 9] and

the results are presented in Figures 7.2 and 7.3 for Reynolds

numbers of 3 and 6 million, respectively.

Upper surface, laminar to turbulent, transition locations

are shown in Figures 7.4 and 7.5 for increasing angles of

attack and for Reynolds numbers of 3 and 6 million,

respectively. Gault's locations were obtained from pressure

and hot-wire measurements, which provided near identical

results. The program transition locations were computed to

be the point of laminar separation. Note that the transition

locations shift forward as the angle of attack is increased,

and they approach the leading edge above 6 degrees. Unless

otherwise stated, all computer runs used a transition

constant of GY = 1200.

Midchord upper surface transitions at less than two

degrees angle of attack and Reynolds numbers of 1.5 to 10

million are shown in Figures 7.6, 7.7, 7.8 and 7.9. In all

cases the computed predictions were forward of Gault's

because of laminar separation predicted by the Code.

while Gault found leading edge separation bubbles, the

Cebeci Code did not predict them at any angle of attack for

Reynolds numbers of 3 and 6 million.

The relationships between separation and transition are

illustrated in Figure 7.10 for the results of Gault and the
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Figure 7.1 NACA 66-018 Airfoil
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LIFT COEFFICIENT
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Figure 7.2 Lift Coefficient, NACA 663-018, R = 3 Million
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LAMINAR TO TURBULENT TRANSITION

..0. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NACA TECHNICAL NsOTE 3505
CEBECI CODE TRANSITION START

m.,
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0.0 0.1 0.2 0.3 0.4 0 .5 0.6 0.7

x/C
NACA 663-018, R = 3.0 MILLION

Figure 7.4 Upper Surface Laminar to Turbulent
Transition, NACA 663-018, R = 3 Million
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LAMINAR TO TURBULENT TRANSITION
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Figure 7.5 Upper Surface Laminar to Turbulent
Transition, NACA 663-013, R = 6 Million
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UPPER SURFACE TRANSITION

o NACA TN 3505 R = 1.5 MILLION
CEBECI CODE R =1.5 MILLION
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Figure 7.6 Upper Surface Transition, midchord, NACA
66,-018, R = 1.5 and 2 Million

71



UPPER SURFACE TRANSITION
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Figure 7.7 Upper surface Transition, Midchord, NACA
66,-018, R = 3 and 4 Million
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UPPER SURFACE TRANSITION

Z1.
......... ......... ........ .... ........... ......... ......... .... ........

LEGEND1
NACA TIN 3505 R = 6 MILLION

.CEBECI CODERP = 6 MILLION ' ...... ......................

.0.30 0.35 0.40 0.45 0.50 0.55 0.'60 0. 65 0.70 0.'75 0.80

X/C
NACA 663-018 MIDCHORD

Figure 7.8 Upper Surface Transition, Midchord, NACA
66,-J18, R = 6 and 8 Million
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UPPER SURFACE TRANSITION

.. . . . . . .. . . . . . .

0EEC COER1 fIW
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Figure 7.9 Upper Surface Transition, Midchord, NACA
663,-018, R = 10 Million
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UPPER SURFACE TRANSITION
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Figure 7.10 Upper Surface Transition and Separation,
Midchord, NACA 663-013, R = 2 Million
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Cebeci code. The experimental results show separation prior

to transition, whereas the computer results predict

separation after transition. The importance of this

difference manifests itself in the difference between the

measured and computed midchord bubbles, pressure

distributions and velocity profiles shown in Figures 7.11 to

7.31.

Midchord separation bubbles for angles of attack of 0 and

2 degrees and Reynolds number of 2 million are plotted in

Figures 7.11 and 7.12. The lines represent contours where

u/u. = 0. The Cebeci Code midchord bubbles are much smaller

than those found by Gault.

Full chord pressure distributions for angles of attack of

zero and two degrees, and Reynolds numbers of three and six

million are shown in Figures 7.13 to 7.16. In each case the

biggest difference between the experimental results and the

Cebeci code occurred near the midchord separation bubble

regions. Figure 7.17 shows a leading edge pressure

distribution for an angle of attack of six degrees and a

Reynolds number of three million.

Midchord velocity profiles are shown in Figures 7.18

through 7.24 for an angle of attack of zero degrees and a

Reynolds number of two million, and in Figures 7.25 through

7.31 for two degrees angle of attack and a Reynolds number of

two million. These velocity profil-s clearly show a big

difference in bubble sizing.
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MIDCHORD BUBBLE SHAPE
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Figure 7.11 Midchord Bubble Shape, NACA 663-018,
AOA = 00, R = 2 million

MID CHORD BUBBLE SHAPE
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NACA 663-018, AOA=2, R--2 MILLION

Figure 7.12 Midchord Bubble Shape, NACA 66,-018,
AOA = 20, R = 2 million
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UPPER SURFACE PRESSURE
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Figure 7.13 Upper Surface Pressure Distribution, NACA
663-018, AOA =00, R =3 Million
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UPPER SURFACE PRESSURE
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Figure 7.14 Upper Surface Pressure Distribution, NACA
663-018, AOA = 00, R = 6 Million
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UPPER SURFACE PRESSURE
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Figure 7.15 Upper surface Pressure Distribution, NACA
663-018, AQA = 20, R = 3 Million
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UPPER SURFACE PRESSURE
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Figure 7.16 Upper Surface Pressure Distribution, NACA
663-018, AOA = 20, R = 6 Million
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UPPER SURFACE PRESSURE
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Figure 7.17 Leading Edge upper surface Pressure
Distribution, NACA 663-018, ACA = 60,
R = 3 Million
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VELOCITY PROFILES
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Figure 7.18 Upper Surface Velocity Profile, NACA 66,-018,
X/C = 60, AOA =00, R =2 Million
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Figure 7.19 Upper surface Velocity Profile, NACA 66,-018,
X/C = 62, ACA = 00, R = 2 Million
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VELOCITY PROFILES
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Figure 7.20 Upper Surface Velocity Profil
X/C = .64, AOA =00, R =2 Million
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VELOCITY PROFILES
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Figure 7.21 Upper Surface Velocity Profile, NACA 663-018,
X/C = .66, AOA = 00, R = 2 Million
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VELOCITY PROFILES
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Figure 7.25 Upper Surface Velocity Profile, MACA 663-018,
X,'C = .58, ACA = 20, R = 2 million
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VELOCITY PROFILES
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Figure 7.27 Upper Sur-face Velocity Profile, NACA 663-018,
XC = .62, ACA = 20, R = 2 Million
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Figure 7.23 Upper Surface Velocity Profile, NACA 66,-O18,
X/C = .64, AGA = 20, R. = 2 Million
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VELOCITY PROFILES
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Figure 7.29 Upper Surface Velocity Profile, NACA 663-018,
X/C = .66, AGA = 20, R = 2 Million
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Figure 7.30 Upper Surface Velocity Profile, NACA 66,-018,
X/C = .68, AOA = 20, R = 2 Million
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Figure 7.31 Upper Surface Velocity Profile, NACA 66,-018,
X,'C = .69, AQA = 20, R = 2 Million
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In an effort to increase the region of separated flow,

both the GY transition constant and the location of upper

surface transition were adjusted. Table 7.1 shows

theresults. With a constant of 1200 the transition location

could not be moved aft. However, when the constant was

lowered to 200 and below, the transition location, x/c = .69,

found by Gault, could be used moving the transition inside

the bubble. While a lowered GYizr constant and increased x/c

transition improved the bubble size, the separation length,

x/c = .60 to .70, could not quite be met. The best result,

bubble = .6391 - .7098 (x/c), was obtained with a GYt, of 40,

and an upper surface transition location, XTRU, input of .69

(x/c). Whether 40 is a suitable value for other foils has

not been determined.

Twenty iterations were used on all computer runs for this

airfoil. To make sure that 20 iterations were sufficient for

accurate results, Figure 7.32 was obtained. The lift

coefficient was plotted for each iteration, and as can be

seen the even iterations produced very minimal changes past

12. Even between 19 and 20 the change in lift was only 5 x

10-'. Therefore, 20 iterations were considered sufficient

for all computer runs.

B. NACA 0010 (MODIFIED)

Similar to the NACA 663-018, computer results of the NACA

0010 (Modified) airfoil section were compared to the test

results of Gault [Ref. 8]. The tests were also conducted in
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TABLE 7.1 EFFECT OF GYTR AND XTRU ON THE LENGTH OF THE

SEPARATION BUBBLE

GYTR XTRU (X/C) SEPARATION (X/C)

1200 .620792 (1) .6572 - .6929
.65 (2)
.69 (2)

400 .69 (2)
300 .69 (2)
200 .69 .6391 - .7596
120 .639164 (1) No Separation

.65 .6572 - .6751

.69 .6391 - .7434
80 .69 .6391 - .7268
60 .69 .6391 - .7268
40 .69 .6391 - .7098
30 .69 .6572 - .7098
20 .69 .6572 - .7098
10 .69 .6572 - .7098

NACA 663-018

Reynolds Number = 2,000,000
Angle of Attack = 0 Degrees

Region of Separation, Experimental (Gault) = .60 - .70 (x/c)

GYTR = Empirical Transition Constant

XTRU = Upper Surface Begin of Transition, Input or Computer
Derived

Lower Surface Begin of Transition = Computer Derived, Each
Case

1) Computer Derived

2) Breakdown in Simulation
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Figure 7.32 Lift Coefficient Versus Iterations, NACA
663-018, ACA = 0, R = 2 Million, Transition
Constant = 1200
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the 7-by-10-foot wind tunnel at NASA Ames and two-dimensional

flow was simulated.

The 0010 (modified) airfoil shown in Figure 7.33, unlike

the 663-018, was not computer tested for section lift

coefficients as Abbott and Doenhoff [Ref. 9] had no

comparable airfoil.

Leading edge, upper surface, laminar to turbulent,

transition locations were observed, though, and the results

are shown in Figures 7.34 and 7.35 for Reynolds numbers of

two and six million, respectively. The Cebeci Code curves

represent the beginning of transition.

Full chord pressure distributions for angles of attack of

zero and three degrees and Reynolds numbers of three and

eight million are plotted in Figures 7.36 through 7.39.

Leading edge pressure distributions for angles of attack

of four, eight and twelve degrees, and Reynolds numbers of

two and six million are shown in Figures 7.40 through 7.45.

Of particular interest are the "lump" disparities in Figures

7.42 through 7.45. A possible explanation for the computer

program deletions of the lumps is a failure to predict

leading edge bubbles.

C. NACA 4412

Computer results of the NACA 4412 airfoil section were

compared to the test results of Hastings and Williams [Ref.

10], which were performed in the 13-by 9-foot low speed wind

tunnel of the Royal Aircraft Establishment at Bedford. The
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NACA 0010 (MODIFIED)
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Figure 7.33 NACA 0010 (Modified)
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LAMINAR TO TURBUJLENT TRANSITION
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Transition, Leading Edge, NACA 0010
(Modified) , R = 2 Million
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UPPER SURFACE PRESSURE
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Figure 7.36 Upper Surface Pressure Distribution, NACA
0010 (Modified), AOA = 00, R = 3 Million
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UPPER SURFACE PRESSURE
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Figure 7.37 Upper Surface Pressure Distribution, NACA
0010 (Modified), ACA =00, R =8 Million
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UPPER SURFACE PRESSURE
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Figure 7.38 upper Surface Pressure Distribut.ion, NACA
0010 (Modified), AOA = 30, R = 3 million
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UPPER SURFACE PRESSURE
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Figure 7.40 Leading Edge Upper Surface Pressure
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Figure 7.41 Leading Edge Upper Surface Pressure
Distribution, NACA 0010 (Modified), AOA = 40,
R = 6 Million
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UPPER SURFACE PRESSURE
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Figure 7.44 Leading Edge Upper Surface Pressure
Distribution, NACA 0010 (Modified),
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UPPER SURFACE PRESSURE
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one meter chord model spanned the full width, 13 feet, to

simulate two-dimensional flow.

Mounted at its quarter-chord point, the model was

extensively instrumented with static pressure orifices.

Boundary layer and wake measurements were made at mid-span

where the 88 pressure orifices were located.

The main emphasis in the experiment was on defining the

upper surface boundary layer through separation and into the

wake. Laser anemometry was used to measure the average

velocities and Reynolds stresses were measured by hot-wire

anemometry.

The 4412 shown in Figure 7.46 was initially computer

tested with the Cebeci code for momentum thickness. In

Figure 7.47 the upper and lower surface laminar to turbulent

transitions were computer derived, x/ctr. upper and lower

surfaces = 0.00625. In Figure 7.48 the upper and lower

surface transitions were input as x/ct,, upper surface = 0.01,

and x/ctr lower surface = 0.11. These values were as close

as could be input to 0.014 and 0.110 respectively, for the

downstream ends of the transition trips used in the

experiment. The differences in transition locations seemed

to make no difference in computer results. The momentum

thicknesses still did not agree very well with Hastings and

Williams' experimental results.

Figure 7.49 compares lift coefficients from the Cebeci

code, Hastings and Williams, and Abbott and Doenhoff [Ref.
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UPPER SURFACE MOMENTUM THICKNESS
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Figure 7.47 Upper Surface momentum Thickness, NACA 4412,
AQA = 12.490, R = 4.17 Million, Computer
Derived Transitions
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UPPER SURFACE MOMENTUM THICKNESS
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LIFT COEFFICIENT
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10]. The dashed line for the Cebeci code, Reynolds number

equal to 4.17 million and computer derived transitions,

should lie between the curves for Reynolds number equal to

three and six million from Abbott and Doenhoff. However, it

lies above the six million curve which further indicates an

insufficient boundary layer development. With the input

transition the code prediction for Reynolds number equal to

4.17 million and angle of attack equal to 12.49 degrees, was

even higher. Of interesting note though, is that the

Hastings and Williams prediction, Reynolds number equals 4.17

million and angle of attack equals 12.49 degrees, lies below

the Abbott and Doenhoff values, possibly indicating an error

on their part.

Figures 7.50 through 7.56 show the velocity profiles from

x/c = .66 to the trailing edge. In all cases the Reynolds

number was 4.17 million, the ancle of attack was 12.49

degrees, and the upper and lower transitions were .01 and

.11, respectively. U/U. indicates the fraction of the

velocity at the boundary layer edge, and q/Delta is the

fraction of boundary layer thickness, where Delta, 6, is

defined as the layer thickness where the velocity is 99% of

the edge velocity.

As these figures indicate, as well as Figure 7.57, a

Cebeci code velocity profile summation, the code does predict

separation, but not the extent indicated by Hastings and

Williams. If the lift coefficient curves, Figure 7.58, can
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UPPER SURFACE VELOCITY PROFILE
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Figure 7.50 Upper Surface Velocity Profile, NACA 4412,
X/C = .66, AOA = 12.490, R = 4.17 Million
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UPPER SURFACE VELOCITY PROFILE
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UPPER SURFACE VELOCITY PROFILE
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UPPER SURFACE VELOCITY PROFILE
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UPPER SURFACE VELOCITY PROFILE

.......... : ......... ........... ......... ..........: ........ .. ......... ....... ......... ..........! ......... ......... ......... ........ ......... !.........

.......... ......... ......... ......... ......... ......... .-. ..i......... ......... ......... ......... ......... ......... ,......... ---------..........

C5 ..... : !... .. ......... ..... ....... .. ... ....... ........ ......... ...... ... ......... .. ... .. .... . ...... ..........

.. ...... ......... . ..... ... .......... i' , --........ !......... ......... ......... ......... ......... ......... ......... ......... .........

C ............ . . ...... ..... .. ...i -" : "......... ;............. i..........

i /X/C =.9181 , CEBECI CODE.......... ..... ..... .iii iiiiii iii iiii ! : i : : * y : : ::........, .........

ETA/DELTA
INACA 4412 R--4.17 MIL AOA=-12.49

Figure 7.54 Upper Surface Velocity Profile, NACA 4412,
X/C = .92, AOA = 12.490 , R = 4.17 Million

124



UPPER SURFACE VELOCITY PROFILE
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UPPER SURFACE VELOCITY PROFILE
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UPPER SURFACE VELOCITY PROFILES
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LIFT COEFFICIENT
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be a reference, then it appears that the Cebeci code predicts

an underdeveloped flow, too little separation, and Hastings

and Williams show an overdeveloped flow, too much separation,

for the given conditions.

To insure that the Cebeci Code was run correctly, certain

results by Cebeci, Clark, Chang, Halsey and Lee [Ref. 1] were

attempted to be duplicated. Figure 7.58 compares two curves

from Figure 14, [Ref. 1], curves labeled interactive theory

and interactive theory with a modified transition, with a

curve obtained using the Cebeci Code with 20 iterations and

computer derived transitions. Interestingly, the first and

third curves of Figure 7.58, interactive theory and Cebeci

Code, respectively, should be the same, but the two clearly

are not above nine degrees angle of attack. Even more

interestingly, the Cebeci Code lift curve in Figure 7.59

after only 10 iterations does match the interactive theory

curve.

Figure 7.60 clearly shows the importance of using enough

iterations to obtain a reasonably accurate solution.

Finally, Figure 7.61 shows a very good match between the

pressure coefficients for set conditions of Figure 16, Cebeci

et al [Ref. 1], and the Cebeci Code, 20 iterations.

D. FX 63-137

Computer results of the Wortmann FX 63-137 airfoil were

compared to the test results of Brendel and Mueller [Ref.

11], which were conducted in the University of Notre Dame
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VARIATION OF CP WITH X/C
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.61m x .61m wind tunnel. Two cast epoxy resin airfoil models

with chords of .305m and spans of .4m were mounted in the

center of the test section. Pressure was recorded on one

model with 96 pressure taps connected through two scanivalves

to an electronic manometer. Boundary layer velocity

measurements were obtained on the other model using a

constant temperature anemometer with a five pm diameter,

single-sensor, hot-wire, boundary layer probe.

Using the Cebeci Code the FX 63-137 airfoil shown in

Figure 7.62 was initially tested for section lift

coefficients with a transition constant of 1200. Reynolds

numbers of .28, .5 and .7 million were used, and the results,

shown in Figures 7.63 and 7.64, were compared to those of

Aithaus and Wortmann [Ref. 12]. Interestingly, the Cebeci

Code predicted low values for Reynolds numbers of .28 and .5

million, but for .7 million the lift coefficients were nearly

identical to Althaus and Wortmann up to an angle of attack of

10 degrees.

As the purpose of Brendel and Mueller was to make

boundary layer measurements at low Reynolds numbers, a

computer comparison was unsuccessfully attempted for steady

flow at a Reynolds number of 100,000 and an angle of attack

of 7 degrees. With 20 iterations the Cebeci Code failed.

To understand why the code calculations ceased for this

case, other computer runs were attempted for the same

Reynolds number and angle of attack, but with fewer
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LIFT COEFFICIENT
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iterations. Figures 7.65 and 7.66 show the upper surface

displacement and momentum thicknesses for steady flow and

iterations of 2, 4, 6, 8 and 10. As can be seen in both

figures flow calculations matched very well with experimental

data up to approximately x/C = .55. After that point stall

occurred and calculations ceased with more than 10

iterations. Brendel and Mueller experimentally derived

separation to begin at x/C = .34, but reattachment was shown

to occur at x/c = .60. Unfortunately the Cebeci Code could

not predict reattachment for the prescribed conditions.
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UPPER SUR DISPLACEMENT THICKNESS
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UPPER SURFACE MOMENTUM THICKNESS
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VIII. CONCLUSIONS AND RECOMMENDATIONS

Cebeci's viscous/inviscid interaction program was applied

to the analysis of steady, two dimensional, incompressible

flow past four airfoils, the NACA 663-018, 0010 (modified),

4412 and the Wortmann FX 63-137. Detailed comparisons with

the available experimental results show that for attached

flows the essential features are correctly modelled, but that

significant discrepancies are found in regions of flow

separation. These discrepancies are possibly caused by the

empirical transition modelling used in the present code.

Future efforts therefore should be directed to the

incorporation of transition calculations which permit the

prediction of transition within a separation bubble, such as

the application of the en-method proposed by Cebeci [Ref.

13].
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